
The Buggy Side of Code Refactoring:
Understanding the Relationship between Refactorings and Bugs

Isabella Ferreira1, Eduardo Fernandes1, Diego Cedrim1, Anderson Uchôa1, Ana Carla Bibiano1,
Alessandro Garcia1, João Lucas Correia2, Filipe Santos2, Gabriel Nunes2, Caio Barbosa2, Baldoino

Fonseca2, Rafael de Mello1
{iferreira,emfernandes,dcgrego,auchoa,abibiano,afgarcia,rmaiani}@inf.puc-rio.br

{jlmc,filipebatista,gabrielnunes,cbvs,baldoino}@ic.ufal.br
1Pontifical Catholic University of Rio de Janeiro, Brazil

2Federal University of Alagoas, Brazil

ABSTRACT
Code refactoring is widely practiced by software developers. There
is an explicit assumption that code refactoring improves the struc-
tural quality of a software project, thereby also reducing its bug
proneness. However, refactoring is often applied with different
purposes in practice. Depending on the complexity of certain refac-
torings, developers might unconsciously make the source code
more susceptible to have bugs. In this paper, we present a longitudi-
nal study of 5 Java open source projects, where 20,689 refactorings,
and 1,033 bug reports were analyzed. We found that many bugs
are introduced in the refactored code as soon as the first immedi-
ate change is made on it. Furthermore, code elements affected by
refactorings performed in conjunction with other changes are more
prone to have bugs than those affected by pure refactorings.

CCS CONCEPTS
• Social and professional topics → Software maintenance; •
Software and its engineering → Software defect analysis; •
General and reference → Empirical studies;

KEYWORDS
Refactoring, bug proneness, software maintenance, empirical study

ACM Reference format:
Isabella Ferreira1, Eduardo Fernandes1, Diego Cedrim1, Anderson Uchôa1,
Ana Carla Bibiano1, Alessandro Garcia1, João Lucas Correia2, Filipe Santos2,
Gabriel Nunes2, Caio Barbosa2, Baldoino Fonseca2, Rafael de Mello1 . 2018.
The Buggy Side of Code Refactoring: Understanding the Relationship be-
tween Refactorings and Bugs. In Proceedings of 40th International Conference
on Software Engineering, Gothenburg, Sweden, May 2018 (ICSE’18), 2 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Code refactoring is a program transformation used to improve the
structure of a program while preserving its observable behavior

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE’18, May 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

[3]. Refactoring, in practice, consists of two significantly differ-
ent tactics, namely root-canal refactoring and floss refactoring [4].
Developers apply root-canal refactoring when they only perform
refactoring operations in a change. Developers apply floss refactor-
ing when they perform refactoring operations together with other
program modifications in a single change.

One could assume that developers are more often intended at
improving structural quality through root-canal refactoring. How-
ever, in both cases, one could also expect that structural quality of
a program is somehow improved through refactoring and, there-
fore, also making the code less prone to bugs in the future. In fact,
there is always an explicit assumption that code refactoring im-
proves the structural quality of a program, thereby reducing the
likelihood of future bugs on the refactored program elements [5].
However, this assumption might not always hold. Developers might
unconsciously make the source code more susceptible to have bugs
depending on the complexity of the refactoring operation.

Unfortunately, there is limited understanding about the relation-
ship between refactorings and bugs, nor the influence of root-canal
and floss refactorings on bugs. Instead, existing studies [6, 8] merely
tend to focus on confirming the intuition that the higher the den-
sity of refactorings in a program, the lower the number of bugs
in the affected code elements. However, a study controversially
suggests that certain types of refactorings may induce bugs [1]. To
better understand the relationship between refactorings and bugs,
we performed a longitudinal study of 5 Java open source software
projects, which consist of a tally of where 20,689 refactorings, and
1,033 bug reports. We analyze to what extent refactored code el-
ements are susceptible to have bugs, i.e., if bugs tend to emerge
soon in refactored code. This analysis is supported by verifying
the distance in number of changes between the commit, where the
refactoring was performed, and the commit where the bug emerged
in the refactored code element. We also analyze the relationship
between refactoring tactics and bugs.

2 STUDY DESIGN AND RESULTS
Figure 1 illustrates the study phases designed for investigating the
relationship between refactorings and bugs. In this study, we aim
to answer the following question: What is the bug proneness of
refactored code elements?. To do that, we assess how distant (Section
1) a bug appears in the software project after a refactoring operation
takes place. A detailed description of each study phase and all study
artifacts are available at the study website [2].

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ICSE’18, May 2018, Gothenburg, Sweden Ferreira et al.

Figure 1: Study Phases

Table 1 presents the distances results. We computed the quartiles
for the distances values and classified them into distance categories.
The minimum value of distance represents that a bug is Too Close
of the refactoring code commit. The first quartile (25%) means that
the bug appeared in a Very Close distance of the refactored code
commit. Similarly, the median (50%) of the project’s data is classified
as Close. The third quartile (75%) means that the bug is Distant, and
the maximum value of distance means that the bug is Very Distant
of the refactored code commit.

Table 1: Bug proneness of refactored code elements

Project N Mean Stdev Too
Close

Very
Close Close Distant Very

Distant
Ant 7 41.86 12.79 28 31 41 51 60
Derby 23 35.65 32.40 1 11 20 59 104
Okhttp 52 35.12 26.93 1 6 36 56 95
Presto 55 27.25 27.15 1 8 16 45 20
Tomcat 11 13.64 15.62 1 2 5 14 37

By looking at the table, we can see that, except for the Ant
project, in 25% of the project data (Very Close column) is necessary
up to 11 changes to emerge a bug in the refactored code element.
Similarly, in 50% of project data (Close column), it is necessary up
to 36 changes so that the bug emerges after the refactoring op-
eration. However, we have found many cases of bugs that were
too close (1 change) away from refactorings in most projects (see
column 5). This result is interesting because it suggests that certain
cases of refactoring operations may have a direct effect on the bug
proneness of a code element. Thus, in contrast to the literature
(Section 1), we observed that refactoring operations might lead to
the occurrence of bugs. In fact, Śliwerski et al. [7] found that refac-
toring operations usually do not induce bugs. The different study
settings may have affected the results. For instance, we systemati-
cally identify refactoring operations based on both tool support and
manual validation, while previous work relies on change analysis,
without methodically validating whether a change represents or
not a refactoring operation. We have also analyzed a different set
of projects, and we have considered 5 software projects against
only 2 of previous work [7]. In summary, we answer our RQ by
observing that refactored code elements are associated with the
further emergence of bugs.

Finding 1. Many bugs are introduced in the refactored code
as soon as the first immediate changes are made on it.

Analysis per Refactoring Tactic. In the previous analysis, we
assessed the bug proneness of refactored code regardless the tactic
of developers when refactoring. However, as discussed in Section 1,
developers often use two refactoring tactics, namely root-canal and
floss refactoring. Thus, aimed at understanding whether different
tactics have different effects on the bug proneness of refactored
code, we assess the distance values between refactorings and bugs
per refactoring tactic. To do that, we manually analyzed a randomly
selected sample of 2,119 refactorings in five software projects. To
support our analysis, Table 2 presents the distance results per refac-
toring tactic.

Table 2: Bug proneness of refactored elements per refactor-
ing tactic

Project Very Close Close Distant Very Distant
Root Floss Root Floss Root Floss Root Floss

Ant 60 30 60 33 60 39 60 46
Derby 30 5 34 8 47 20 61 104
Okhttp 10 2 18 3 24 5 53 12
Presto 1 1 4 5 14 25 32 105
Tomcat 1 1 1 2 1 5 1 9

Our results suggest that 50% of the distance values vary in a
range from 1 to 60 for root-canal refactoring, and from 1 to 33
for floss refactoring. This implies that, when developers are refac-
toring probably with the intention of exclusively improving the
code structural quality (root-canal refactoring), bugs appear farther
from the refactored code commit if compared to floss refactoring.
Instead, when developers have other primary concerns rather than
improving software quality (floss refactoring), the bugs tend to
appear much closer to the refactored code commit.

Finding 2. Code elements affected by floss refactoring are
closer to bugs than code elements affected by root-canal refac-
toring.

3 ACKNOWLEDGMENT
This work is funded by CAPES/Procad (grant # 175956), CNPq
(grants # 309884/2012-8, 483425/2013-3 and 477943/2013-6), FAPERJ
(E26-102.166/2013) and FAPERJ (grant # 102166/2013 and 22520
7/2016).

REFERENCES
[1] Gabriele Bavota et al. 2012. When does a refactoring induce bugs?. In SCAM.
[2] Isabella Ferreira et al. 2018. Research website. (2018). https://isabellavieira57.

github.io/icse2018/index.html
[3] Martin Fowler. 1999. Refactoring. Addison-Wesley Professional.
[4] Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. 2012. How we refactor,

and how we know it. TSE 38, 1 (2012).
[5] F. Palomba et al. 2016. Smells Like Teen Spirit: Improving Bug Prediction Perfor-

mance Using the Intensity of Code Smells. In ICSME.
[6] Jacek Ratzinger, Thomas Sigmund, and Harald C Gall. 2008. On the relation of

refactorings and software defect prediction. In MSR.
[7] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do

changes induce fixes?. In ACM SIGSOFT Software Engineering Notes (SEN). 1–5.
[8] Peter Weißgerber and Stephan Diehl. 2006. Are refactorings less error-prone

than other changes?. In MSR.

https://isabellavieira57.github.io/icse2018/index.html
https://isabellavieira57.github.io/icse2018/index.html

	Abstract
	1 Introduction
	2 Study Design and Results
	3 Acknowledgment
	References

